3.536 \(\int \frac {(a+b x^3)^{2/3}}{x^5} \, dx\)

Optimal. Leaf size=38 \[ -\frac {\left (a+b x^3\right )^{5/3} \, _2F_1\left (\frac {1}{3},1;-\frac {1}{3};-\frac {b x^3}{a}\right )}{4 a x^4} \]

[Out]

-1/4*(b*x^3+a)^(5/3)*hypergeom([1/3, 1],[-1/3],-b*x^3/a)/a/x^4

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 51, normalized size of antiderivative = 1.34, number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {365, 364} \[ -\frac {\left (a+b x^3\right )^{2/3} \, _2F_1\left (-\frac {4}{3},-\frac {2}{3};-\frac {1}{3};-\frac {b x^3}{a}\right )}{4 x^4 \left (\frac {b x^3}{a}+1\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3)^(2/3)/x^5,x]

[Out]

-((a + b*x^3)^(2/3)*Hypergeometric2F1[-4/3, -2/3, -1/3, -((b*x^3)/a)])/(4*x^4*(1 + (b*x^3)/a)^(2/3))

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {\left (a+b x^3\right )^{2/3}}{x^5} \, dx &=\frac {\left (a+b x^3\right )^{2/3} \int \frac {\left (1+\frac {b x^3}{a}\right )^{2/3}}{x^5} \, dx}{\left (1+\frac {b x^3}{a}\right )^{2/3}}\\ &=-\frac {\left (a+b x^3\right )^{2/3} \, _2F_1\left (-\frac {4}{3},-\frac {2}{3};-\frac {1}{3};-\frac {b x^3}{a}\right )}{4 x^4 \left (1+\frac {b x^3}{a}\right )^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 51, normalized size = 1.34 \[ -\frac {\left (a+b x^3\right )^{2/3} \, _2F_1\left (-\frac {4}{3},-\frac {2}{3};-\frac {1}{3};-\frac {b x^3}{a}\right )}{4 x^4 \left (\frac {b x^3}{a}+1\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^3)^(2/3)/x^5,x]

[Out]

-1/4*((a + b*x^3)^(2/3)*Hypergeometric2F1[-4/3, -2/3, -1/3, -((b*x^3)/a)])/(x^4*(1 + (b*x^3)/a)^(2/3))

________________________________________________________________________________________

fricas [F]  time = 0.86, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{5}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(2/3)/x^5,x, algorithm="fricas")

[Out]

integral((b*x^3 + a)^(2/3)/x^5, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{5}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(2/3)/x^5,x, algorithm="giac")

[Out]

integrate((b*x^3 + a)^(2/3)/x^5, x)

________________________________________________________________________________________

maple [F]  time = 0.12, size = 0, normalized size = 0.00 \[ \int \frac {\left (b \,x^{3}+a \right )^{\frac {2}{3}}}{x^{5}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(2/3)/x^5,x)

[Out]

int((b*x^3+a)^(2/3)/x^5,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{5}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(2/3)/x^5,x, algorithm="maxima")

[Out]

integrate((b*x^3 + a)^(2/3)/x^5, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {{\left (b\,x^3+a\right )}^{2/3}}{x^5} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^3)^(2/3)/x^5,x)

[Out]

int((a + b*x^3)^(2/3)/x^5, x)

________________________________________________________________________________________

sympy [C]  time = 1.32, size = 46, normalized size = 1.21 \[ \frac {a^{\frac {2}{3}} \Gamma \left (- \frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {4}{3}, - \frac {2}{3} \\ - \frac {1}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 x^{4} \Gamma \left (- \frac {1}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(2/3)/x**5,x)

[Out]

a**(2/3)*gamma(-4/3)*hyper((-4/3, -2/3), (-1/3,), b*x**3*exp_polar(I*pi)/a)/(3*x**4*gamma(-1/3))

________________________________________________________________________________________